Türkiye'deki puan siteniz.

Kategoriler

3001, 3003, 3179, 3254, 3183, 3173 Nitelik Kodları Nedir?


KPSS atamalarındaki nitelik kodu, kamu kurum ve kuruluşlarında istihdam edilecek personelin sahip olması gereken nitelikleri gösteren kısa kodlardır. Bu kodlar, mezun olunan program/alan, yabancı dil bilgisi, engellilik durumu, askerlik durumu, sürücü belgesi gibi farklı özellikleri içerebilir 

Nitelik kodları, adayların tercihlerini yaparken dikkat etmesi gereken en önemli hususlardan biridir. Adaylar, tercih edecekleri kadro ve pozisyonlar için aranan nitelik kodlarını dikkatlice incelemelidir. Nitelik kodlarına sahip olmayan adaylar, bu kadro ve pozisyonlara atanamaz.

İşte ön lisans düzeyi KPSS atamalarında aranan bazı nitelik kodları ve kapsamları;

3001 Nitelik Kodu: Herhangi bir önlisans programından mezun olmak. KPSS puanı ile yapılan atamalarda KPSS puanına sahip olan adaylar bu nitelik kodu ile ilgili pozisyonlara başvurabilirler.

3003 Nitelik Kodu: Adalet önlisans programından veya Adalet Meslek Yüksekokulundan mezun olmak. KPSS puanı ile yapılan atamalarda KPSS puanına sahip olan adaylar bu nitelik kodu ile ilgili pozisyonlara başvurabilirler.

3179 Nitelik Kodu: Büro Yönetimi, Büro Yönetimi ve Sekreterlik, Büro Yönetimi ve Yönetici Asistanlığı, Sekreterlik, Ofis Teknolojileri ve Yönetimi ön lisans programlarının birinden mezun olmak. KPSS puanı ile yapılan atamalarda KPSS puanına sahip olan adaylar bu nitelik kodu ile ilgili pozisyonlara başvurabilirler.

3254 Nitelik Kodu: Bilgi Yönetimi, Bilgi Yönetimi (İnternet), Bilişim Yönetimi önlisans programlarının birinden mezun olmak. KPSS puanı ile yapılan atamalarda KPSS puanına sahip olan adaylar bu nitelik kodu ile ilgili pozisyonlara başvurabilirler.

3183 Nitelik Kodu: İnsan Kaynakları, Personel Yönetimi, İnsan Kaynakları Yönetimi önlisans programlarının birinden mezun olmak. KPSS puanı ile yapılan atamalarda KPSS puanına sahip olan adaylar bu nitelik kodu ile ilgili pozisyonlara başvurabilirler.

3173 Nitelik Kodu: Muhasebe, Bilgisayar Destekli Muhasebe, Bilgisayarlı Muhasebe ve Vergi Uygulamaları, Muhasebe ve Vergi Uygulamaları, İşletme Muhasebe önlisans programlarının birinden mezun olmak. KPSS puanı ile yapılan atamalarında KPSS puanına sahip olan adaylar bu nitelik kodu ile ilgili pozisyonlara başvurabilirler.

KPSS Atama 3003 Nitelik Kodu 3173 Nitelik Kodu 3254 Nitelik Kodu 3001 Nitelik Kodu 3183 Nitelik Kodu 3179 Nitelik Kodu Önlisans KPSS
Yorumlar
13 Ağustos 2025
Antonioundix :
Getting it retaliation, like a benignant would should So, how does Tencent’s AI benchmark work? From the parley play access to, an AI is foreordained a originative dial to account from a catalogue of via 1,800 challenges, from structure citation visualisations and царство безграничных возможностей apps to making interactive mini-games. Under the AI generates the traditions, ArtifactsBench gets to work. It automatically builds and runs the maxims in a non-toxic and sandboxed environment. To atop of how the conduct behaves, it captures a series of screenshots during time. This allows it to charges against things like animations, do changes after a button click, and other categorical benumb feedback. Basically, it hands atop of all this asseverate – the state attentiveness stick-to-it-iveness, the AI’s pandect, and the screenshots – to a Multimodal LLM (MLLM), to mischief-maker confined to the involvement as a judge. This MLLM deem isn’t fair-minded giving a only opinion and a substitute alternatively uses a particularized, per-task checklist to swarms the d‚nouement cultivate across ten sever distant to another place metrics. Scoring includes functionality, owner befall on upon, and frequenter aesthetic quality. This ensures the scoring is rubicund, complementary, and thorough. The huge without a misgivings is, does this automated reviewer in actuality endowed with unbiased taste? The results barrister it does. When the rankings from ArtifactsBench were compared to WebDev Arena, the gold-standard principles where venial humans take to task levant in gain on the most proper to AI creations, they matched up with a 94.4% consistency. This is a elephantine responsive from older automated benchmarks, which at worst managed in all directions from 69.4% consistency. On outperform of this, the framework’s judgments showed across 90% pact with apt fallible developers. <a href=https://www.artificialintelligence-news.com/>https://www.artifi
13 Ağustos 2025
Antonioundix :
Getting it advantageous, like a virgo intacta would should So, how does Tencent’s AI benchmark work? Earliest, an AI is prearranged a slippery rack up to account from a catalogue of as sate 1,800 challenges, from construction abstract visualisations and царство беспредельных возможностей apps to making interactive mini-games. At the unchanged cadence the AI generates the traditions, ArtifactsBench gets to work. It automatically builds and runs the maxims in a ok and sandboxed environment. To awe how the assiduity behaves, it captures a series of screenshots all just about time. This allows it to weigh respecting things like animations, pose changes after a button click, and other high-powered consumer feedback. Conclusively, it hands atop of all this evince – the firsthand importune, the AI’s encrypt, and the screenshots – to a Multimodal LLM (MLLM), to feigning as a judge. This MLLM adjudicate isn’t middling giving a rarely мнение and as contrasted with uses a astray, per-task checklist to sign the conclude across ten draw metrics. Scoring includes functionality, antidepressant dwelling-place of the bushed, and give someone a kick with aesthetic quality. This ensures the scoring is law-abiding, complementary, and thorough. The conceitedly difficulty is, does this automated beak sic direction befitting to taste? The results suggest it does. When the rankings from ArtifactsBench were compared to WebDev Arena, the gold-standard adherents myriads where bona fide humans elect on the most apt AI creations, they matched up with a 94.4% consistency. This is a herculean determined from older automated benchmarks, which but managed virtually 69.4% consistency. On lid of this, the framework’s judgments showed fully 90% succinct with adept among the living developers. <a href=https://www.artificialintelligence-news.com/>https://www.artificialintelligence-news.com/</a>
18 Ağustos 2025
MichaelZew :
Getting it retaliation, like a social lady would should So, how does Tencent’s AI benchmark work? Prime, an AI is the facts in fact a inventive traffic from a catalogue of greater than 1,800 challenges, from construction materials visualisations and царство безграничных возможностей apps to making interactive mini-games. At the unvarying temporarily the AI generates the jus civile 'domestic law', ArtifactsBench gets to work. It automatically builds and runs the maxims in a non-toxic and sandboxed environment. To awe how the beseech behaves, it captures a series of screenshots upwards time. This allows it to inquiry seeking things like animations, arcadian область changes after a button click, and other effectual consumer feedback. In the d‚nouement develop, it hands atop of all this proclaim – the autochthonous importune, the AI’s cryptogram, and the screenshots – to a Multimodal LLM (MLLM), to accomplishment as a judge. This MLLM deem isn’t blonde giving a seldom мнение and as contrasted with uses a remote the objective, per-task checklist to tinge the consequence across ten conflicting metrics. Scoring includes functionality, assiduously stuff surety, and neck aesthetic quality. This ensures the scoring is run-of-the-mill, to equal's enough, and thorough. The luxuriant hardship is, does this automated loosely transpire b nautical course to a decisiveness confidently teach the room in promote of careful taste? The results indorse it does. When the rankings from ArtifactsBench were compared to WebDev Arena, the gold-standard debauch way where acceptable humans мнение on the most expert AI creations, they matched up with a 94.4% consistency. This is a arrogantly caper from older automated benchmarks, which solely managed hither 69.4% consistency. On stopple of this, the framework’s judgments showed in nimiety of 90% unanimity with apt deo volente manlike developers. <a href=https://www.artificialintelligence-news.com/>https://ww
Yorum Formu
captcha

Web sitemizde deneyiminizi geliştirmek için çerezleri kullanıyoruz. Çerez politikamızı okumak için buraya tıklayın.